Connecting $f^{\prime}$ and $f^{\prime \prime}$ with the graph of $f$


## Theorem-First Derivative Test for Local Extrema

-The following test applies to a continuous function $f$.

At a critical point $c$ :

1) If $f^{\prime}$ changes sign from positive to negative at $c$, $\left(f^{\prime}>0\right.$ for $x<c$ and $f^{\prime}<0$ for $x>c$ ), then $f$ has a local max value at $c$.

2) If $f^{\prime}$ changes sign from negative to positive at $c$, ( $f^{\prime}<0$ for $x<c$ and $f^{\prime}>0$ for $x>c$ ), then $f$ has a local min value at $c$.

3) If $f^{\prime}$ does not change sings at $c$, ( $f^{\prime}$ has the same sign on both sides of $c$ ), then $f$ has no extreme values at $c$.


## Example

Find the critical points of $f(x)=x^{3}-12 x-5$. Find the functions local max and min values. Identify the intervals where it is increasing and decreasing.
-Since $f$ is continuous and differentiable the critical points only occur at the zeros of $f^{\prime}$.

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12=0 \\
& x^{2}=4 \\
& x=-2,2
\end{aligned}
$$

-The zeros of $f^{\prime}$ can be used to partition the interval.

| Intervals | $-\infty<x<2$ | $-2<x<2$ | $2<x<\infty$ |
| :--- | :---: | :---: | :---: |
| Sign of $\mathrm{f}^{\prime}$ | + | - | + |
| Behavior of f | Increasing | Decreasing | Increasing |

-We can see from the table there is a local max at $x=-2$ and $\min$ at $x=2$.
-The local max value is $f(-2)=11$ and the local min value is $f(2)=-21$.
-There are no absolute extremea.
-The function increases on $(-\infty,-2]$ and $[2, \infty)$ and decreases on the interval $[-2,2]$.

## Example

$f(x)=\left(x^{2}-3\right) e^{x}$

$$
\begin{aligned}
& f^{\prime}(x)=\left(x^{2}-3\right) \cdot \frac{d}{d x} e^{x}+\frac{d}{d x}\left(x^{2}-3\right) e^{x} \\
& =\left(x^{2}-3\right) e^{x}+(2 x) e^{x} \\
& =\left(x^{2}+2 x-3\right) e^{x}
\end{aligned}
$$

-Since $e^{x}$ is never $0, f^{\prime}(x)$ is 0 iff

$$
\begin{aligned}
& x^{2}+2 x-3=0 \\
& (x+3)(x-1)=0
\end{aligned}
$$

$$
x=-3,1
$$

| Intervals | $x<-3$ | $-3<x<1$ | $1<x$ |
| :--- | :---: | :---: | :---: |
| Sign of $\mathrm{f}^{\prime}$ | + | - | + |
| Behavior of f | Increasing | Decreasing | Increasing |

Local max at $x=-3$
Local min at $x=1$

Increases on $(-\infty,-3]$ and $[1, \infty)$ and decreases on $[-3,1]$

