Connecting f' and f" with the graph of f

Theorem-First Derivative Test for Local Extrema

-The following test applies to a continuous function f.

At a critical point c:

1) If f' changes sign from positive to negative at c, (f' > 0 for x < c and f' < 0 for x > c), then f has a <u>local max</u> value at c.

2) If f' changes sign from negative to positive at c, (f' < 0 for x < c and f' > 0 for x > c), then f has a <u>local min</u> value at c.

3) If f' does not change sings at c, (f' has the same sign on both sides of c), then f has no extreme values at c.

Example

Find the critical points of $f(x) = x^3 - 12x - 5$. Find the functions local max and min values. Identify the intervals where it is increasing and decreasing.

-Since f is continuous and differentiable the critical points only occur at the zeros of f'.

$$f'(x) = 3x^2 - 12 = 0$$

$$x^2 = 4$$

$$x = -2.2$$

-The zeros of f' can be used to partition the interval.

Intervals	-∞ < <i>x</i> < 2	-2 < x < 2	2 < <i>x</i> < ∞
Sign of f'	+	-	+
Behavior of f	Increasing	Decreasing	Increasing

-We can see from the table there is a local max at x = -2 and min at x = 2.

-The local max value is f(-2) = 11 and the local min value is f(2) = -21.

-There are no absolute extremea.

-The function increases on $\left(-\infty,-2\right]$ and $\left[2,\infty\right)$ and decreases on the interval $\left\lceil-2,2\right\rceil.$

Example

$$f(x) = (x^2 - 3)e^x$$

$$f'(x) = (x^2 - 3) \cdot \frac{d}{dx} e^x + \frac{d}{dx} (x^2 - 3)e^x$$

$$= (x^2 - 3)e^x + (2x)e^x$$

$$= (x^2 + 2x - 3)e^x$$

-Since
$$e^x$$
 is never 0, $f'(x)$ is 0 iff

$$x^2 + 2x - 3 = 0$$

$$(x+3)(x-1)=0$$

$$x = -3.1$$

Intervals	x < -3	-3 < x < 1	1 < x
Sign of f'	+	-	+
Behavior of f	Increasing	Decreasing	Increasing

Local max at x = -3

Local min at x = 1

Increases on $\left(-\infty, -3\right]$ and $\left[1, \infty\right)$ and decreases on $\left[-3, 1\right]$